
Usage notes for Windows Browser 2.7
 Hippocrates Sendoukas

 June 15, 1993

 Topics
 Introduction
 Usage
 Searching for text
 Regular expression errors
 Selecting a font
 Copying text to the clipboard
 Packing list
 Caveats
 Licensing agreement

Introduction

This document summarizes the use of WBR which is a browser for text files under MS-
Windows. It requires Windows 3.0 or later and works only on standard or enhanced modes.
All program functions can be accessed through standard menus or accelerator keys that are
shown after each menu entry. The program comforms to the MDI specification. Its operation
is quite simple; it reads one or more text files into memory and displays them on the screen.
You can move around the file by using the scroll bars or the arrow keys. You can also use
regular expressions for convenient searching. Finally, you can use any installed font to
display your files. All options as well as window position and size are recorded in the "win.ini"
file for your convenience. The browser also records the last eight files that you opened and
appends their names to the "File" submenu. Then you can open any of these files quickly by
clicking on the desired name.

Usage

The program accepts several command line switches and filenames. The purpose of these
command line arguments is to simplify the use of the browser from other programs; I chose
this method of interprocess communication since most programs can execute system
commands, while relatively few support more advanced forms of communication such as
DDE or registered messages. The formal usage is:

 wbr [-1] [-x] [-l] [-c] [-n] [-w] [-s xxxx] [-g NN] [filename]
where items in square brackets are optional. If you specify one or more filenames upon
invocation, the browser will open all requested files in separate MDI windows.
The "-1" switch forces a single instance of the program; if you call the browser twice with
this switch, the second instance will only instruct the first instance to open (or refresh) the
requested files. This is a particularly useful feature since the calling program does not need
to check if the browser is already running. All other command line switches are meant to be
used together with this switch. When you use this switch, the program does not append any
filenames to the "File" submenu; this is useful for the temporary log files of the dvi driver.
The "-x" switch instructs the browser to display the requested file in a maximized window.
The "-l" switch is equivalent to the combination of the "-1" and "-x" switches; its only
purpose is backward compatibility with previous versions of the program.
The "-c" switch instructs the browser to close any other instance of itself. This is useful if you
want to terminate the program automatically.
The "-n" switch instructs the browser to avoid refreshing any files that are already open.
The "-w" switch instructs the browser to avoid issuing warnings about missing files.
The "-s xxxx" switch instructs the browser to search for the string "xxxx" in the active
window.
The "-g NN" switch instructs the browser to go to line NN in the active window. If NN is
negative, it indicates a line relative to the end of the file.

Searching for text

The browser supports searches using "regular expressions". This is a very powerful method
that lets you perform "approximate" searches. Regular expressions are patterns that can
match more than one string. They are composed of normal and special characters. In their
simplest form they contain only normal characters and can match only a single string: for
example the expression "abc" will match the substring whether it occurs by itself or within a
word. It will match the strings "abc", "abcd", "0abcd"; it will not match the string "Abc" or
"aBCd". Such simple patterns are useful, but there are many cases where one needs
something more powerful; suppose for example that we want to find the keyword "if" in a
Pascal program: Pascal is not case sensitive, so we have to check all possible spelling
combinations; furthermore, we do not want the pattern to occur within other words. Regular
expressions provide many such capabilities which are controlled by special characters
embedded within the pattern. These characters and their functions are:

 Character Function
 . Matches any character
 [...]        Matches a character from those inside the bracket
 * Matches zero or more instances of the preceding character
 + Matches one or more instances of the preceding character
 ? Matches zero or one instances of the preceding character
 {n1,n2} Matches n1 to n2 instances of the preceding character
 ^ Matches the beginning of a line
 $ Matches the end of a line
 <...> Matches an entire word
 (...)        Brackets a regular expression

The first group of special characters involves the specification of single characters. A dot (.)
denotes any character; for example, the pattern "i." matches the strings "if", "in" or "i7". A
set of brackets enclosing some characters denotes a character class and the expression
matches any single character from the character class; the pattern "[Ii]f" matches the
strings "if" and "If". You can also abbreviate the character class by using a dash: the pattern
"[a-z]" will match any lowercase letter. You can also specify a negative character class,
where the expression will match any character except those in the character class; this is
accomplished by specifying a caret sign (^) immediately after the left bracket; the pattern
"[^a-z]" will match any character except a lowercase letter.
There are also some special characters dealing with the number of instances of a character
(this is called closure). An asterisk denotes zero or more occurrences of the preceding
character; the pattern "go*d" matches the strings "gd", "god", "good", "goood", etc. A plus
sign denotes one or more instances of the preceding character; the pattern "go+d" matches
the strings "god", "good", "goood", but not the string "gd". A question mark matches zero or
one instances of the preceding character; therefore, the pattern "go?d" will match only the
strings "gd" and "god". The special characters {n1,n2} match n1 to n2 instances of the
preceding character; the pattern "go{2,3}d" matches the strings "good" and "goood", but
not the strings "god" or "gooood". There are also two variants of the last special characters.
The special characters "{n1}" match exactly n1 instances of the preceding character, while
the special characters "{n1,}" match at least n1 instances of the preceding character.
The third group of special characters deals with the location of the string. If the first
character of the regular expression is a caret (^), the expression will be matched only at the
beginning of a line. For example, the pattern "^abc" matches the string "abc" only if it

occurs at the beginning of a line. Similarly the dollar sign ($) matches the end of a line; the
pattern "abc$" matches the string "abc" only if it occurs at the end of a line. The pattern
"^$" will match all empty lines. Note that these two characters are treated as special
characters only if they occur in the beginning or the end of the regular expression. That is,
the pattern "a$b^c" will match the string "a$b^c" regardless of its position on a line.
Another set of special characters are "<" and ">". These facilitate the matching of entire
words, ignoring any matching substrings embedded in other strings. For example, the
pattern "<abc>" will match the string "abc" by itself, but not the string "abcd".
Sometimes we need to specify parts of the regular expression. For this reason, we use the
special characters "(" and ")" to bracket a part of the expression. The matching behavior is
not affected, but we can refer to these parts of the expression by the notation "\N" where N
is a digit between 1 and 9. Suppose that we want to find all sequences of two identical
characters; this would appear quite difficult since we do not know these characters in
advance. Regular expression bracketing solves this problem quite elegantly: the pattern "(.)\
1" will find the desired characters.
Since the characters . [] * + ? ^ $ () { } have a special meaning in the context of regular
expressions, we need another special notation when we want to search for them literally: in
order to suppress the special meaning of any character ("quote" it), we can precede it by a
backslash. Therefore if we want to find an asterisk, the search string will be "*"; if we want
to find a left parenthesis, the search string will be "\(". To find a backslash by itself, the
search string will be "\\". For the user's convenience, the program also accepts some
standard escape sequences. The sequence "\n" indicates the newline character (^J), "\r"
indicates the carriage return character (^M), "\t" indicates the tab character (^I), "\b"
indicates the backspace character (^H), "\a" indicates the bell character (^G), "\f" indicates
the formfeed character (^L), and "\xNN" indicates the character with code NN where NN are
two hexadecimal digits. These escape sequences can be used anywhere in the search
patterns.
Another fundamental rule is that regular expressions try to match as many characters as
possible. While this is usually desirable, there are cases where it can be surprising. Suppose
for example that the search pattern is "\(.*\)" (the parentheses are quoted to indicate that
we want to match them literally), and our text is "(one) and (two)". In this case, the pattern
will match the entire line, since it will find the last right parenthesis at the end. If we wanted
only the first pair of parentheses, we should specify "\([^)]*\)" as our search pattern. In this
way, it will match the substring "(one)". The right parenthesis inside the square brackets
does not need to be quoted: almost all characters in a character class are taken literally.
Another point that we should keep in mind is that the matching of closures can be
sometimes surprising. Suppose for example that the search string is "s*". Since the search
string specifies zero or more occurrences of the letter s, it will match anything, including the
empty string. The problem is that the search string consists only of a closure, and therefore
it matches anything. A simple solution to this problem, is to avoid using such search strings.
For a more thorough discussion of regular expressions, one can read any book describing the
operation of the Unix "ed", "sed", "grep", "awk" or "lex" commands. In general, regular
expressions are quite powerful means of manipulating text. They have however several
limitations: for example, the construction of some compound patterns can be complicated.
Furthermore, they are line oriented: that is, they cannot match expressions spanning more
than one line.

Regular Expression Errors

It should be obvious by now that not all regular expressions are valid. The program checks
each expression and complains if it is illegal. The possible error messages are:

"Invalid number": This means that the program did not find an expected number. This
can happen when you do not specify a number incide a pair of braces.
"Invalid subexpression number": This means that you specified an undefined
subexpression. The expression "(.)\1" is valid because "\1" corresponds to the
subexpression "(.)". However, the expression "(.)\2" is invalid because you did not
specify two subexpressions (using parentheses).
"Unbalanced parentheses": This indicates that the left and right parentheses for
bracketing subexpressions are unbalanced.
"Too many (": This means that you tried to bracket more than 9 subexpressions.
"More than 2 numbers in {    }": You can specify one or two numbers within a pair of
braces. This message indicates a violation of this rule.
"} expected": This message arises from an ill-formed pair of braces. The only valid
tokens inside the braces are numbers or a comma after the first number.
"First number exceeds second in {    }": Two numbers inside a pair of braces indicate
the minimum and maximum number of times that the previous character should be
matched. Obviously, the minimum cannot be more than the maximum.
"Unbalanced square brackets": This message indicates that the left and right
brackets for a character class do not match.
"Expression too complicated": The program checks a regular expression for errors
and "compiles" it to an intermediate form for quick searching. This error can arise if the
intermediate form is too large, which typically happens if you specify too many character
classes (above 15).
"Invalid hexadecimal number": As mentioned previously, the program lets you
specify any 8-bit character by using a hexadecimal notation "\xNN" where NN is a valid
hexadecimal number. All such numbers should consist of two hexadecimal digits exactly:
that is, use \x08 instead of \x8. This error occurs if any of the two characters following \x
is not a valid hexadecimal character.
"Unknown error": This is a "catch all" that should never occur. If you see it, you can be
sure that there is a bug in the program and I would appreciate if you let me know about
it, so I can fix it.

Selecting a font

The program lets you use any installed font in your system; it can deal with variable pitched,
bitmap, vector, TrueType or ATM fonts. When you select the "Font" entry in the "Options"
menu, you are presented with a dialog box containing all the installed fonts at all sizes and
styles. Your selection is automatically recorded in "win.ini", so you do not need to set it more
than once.

Copying text to the clipboard

You can copy the entire text of the active file to the clipboard by selecting the "Copy"
command from the "Edit" menu. There is no way in this version to copy only a portion of the
text.

Packing List

Make sure that you have all the relevant files:
 Filename      Description
 wbr.exe Text file browser
 wbr.hlp Help file using standard fonts
 wbr2.hlp Help file using larger fonts
 wbr.wri Printable documentation
 miscwin.dll      Utility routines
 commdlg.dll    More Utility routines
 ctl3d.dll More utility routines

The only required files for the browser are "wbr.exe", "miscwin.dll", "ctl3d.dll" and
"commdlg.dll"; the last file is required only when using Windows 3.0. The files "ctl3d.dll" and
"commdlg.dll" are distributed by Microsoft Co. which requires them to reside in your "\
windows\system" directory. All other files except for the documentation must reside either in
a directory specified by the PATH environment variable, or the base directory of Windows. If
you use a resolution of 1024x768 or higher, you may find the standard help fonts a bit hard
to read. In that case, rename the file "wbr2.hlp" to "wbr.hlp" so that the browser uses this
file instead of the other one.

Caveats

The program reads files into memory and just displays them; it will complain if there is not
enough memory to load a file (which is unlikely since Windows has virtual memory). In
general, it can handle quite large files (unlike Notepad) without excessive demands on
memory. The program has proven quite useful to me, and I hope that it serves you equally
well. I have tested and debugged it extensively, but I cannot afford to make any guarantees;
anybody who uses it assumes all risks. On the other hand, if you find any bug or have any
suggestion for improvements, I will be more than happy to hear about it and I will do my
best to fix it. You can contact me via e-mail at "sendouk@scf.usc.edu", or regular mail at
"3230 Overland Ave. #201, Los Angeles, CA 90034".

Licensing Agreement

The author of this software grants to any individual or non-commercial organization the
right to use and to make an unlimited number of copies of this software. You may not
decompile, disassemble, reverse engineer, or modify the software. This includes, but is not
limited to modifying/changing any icons, menus, or displays associated with the software.
This software cannot be sold without written authorization from the author. This restriction is
not intended to apply to connect time charges, or flat rate connection/ download fees for
electronic bulletin board services. The author of this program accepts no responsibility for
damages resulting from the use of this software and makes no warranty or representation,
either express or implied, including but not limited to, any implied warranty of
merchantability or fitness for a particular purpose. This software is provided as is, and you,
its user, assume all risks when using it.

 Hippocrates A. Sendoukas
 Internet address: sendouk@scf.usc.edu
 Mail address:        3230 Overland Ave. #201, L.A., CA 90034, USA

